定性检测的样本量估算之精确概率法

本文链接:https://www.cnblogs.com/snoopy1866/p/16069000.html

定性检测的样本量估算常用单组目标值法和抽样误差法,《体外诊断试剂临床试验技术指导原则》(2017年第72号)中提到:当评价指标P接近100%时,这两种样本量估算方法可能不适用,应考虑更加适宜的方法进行样本量估算和统计学分析,如精确概率法

PASS 软件提供的 Test for One Proportion 模块提供了精确概率法的选项,在 Power Calculation Method 中选择Binomial Enumeration 即可。SAS 软件的 PROC POWER 过程则不支持精确概率法。

例如:某试剂的阳性符合率预期值为98%,目标值为95%,取显著性水平α=0.05,检验效能1-β=0.8,试估计所需样本量。
由于98%接近100%,因此采用精确概率法计算样本量。在 PASS 软件中设置相关参数,计算所需样本量为312。
定性检测的样本量估算之精确概率法

需要注意的是:PASS软件通过迭代寻找满足检验效能高于0.8的样本量,当找到一个满足条件的样本量时,PASS即中止迭代,然而此时的样本量有可能并不是保守的。下面将展示这种“不保守”的现象。

在PASS软件中,我们设定求解目标为Power,样本量取值为区间[310, 370],绘制功效曲线如下:
定性检测的样本量估算之精确概率法
可以发现:检验效能并非随着样本量增加而单调增加,而是显示出“锯齿状”(saw-toothed),即使样本量高于PASS软件计算出的312,也存在检验效能低于0.8的情况,当且仅当样本量≥338时,才能保证检验效能稳定在0.8以上。造成此现象的原因是二项分布的离散性。

以下SAS宏代码可用于计算给定参数下的精确概率法的最保守样本量,供参考。
程序的基本思路如下:
Step1. 使用 PROC POWER 过程的近似正态法计算一个粗略的样本量n1
Step2. 在n1 附近找一个区间,区间上下界通过参数lbound_rateubound_rate 控制
Step3. 使用 PROC POWER 过程计算样本量在区间 [lbound_rate *n1,ubound_rate *n1] 的检验效能
Step4. 判断区间 [lbound_rate *n1,ubound_rate *n1] 内是否存在满足任意 n>n0,使得 power(n) > 0.8 且 n0 之后的第一个波谷满足 power > 0.8 的 n0
Step5. 如 Step 4 找到了满足条件的n0,则输出样本量计算结果;否则,根据参数expand_step 扩展区间上界,重复 Step1-Step4

/* 宏程序功能:单组目标值-精确概率法,计算最保守样本量,计算结果未考虑脱落率。 */ %macro SampleSize_ExactBinomial(p0, p1, alpha = 0.05, power = 0.8, lbound_rate = 0.8, ubound_rate = 1.2, expand_step = 1,                                 OutDataSet = SampleSize_ExactBinomial, DetailInfo = DetainInfo,                                 PowerPlot = Y); /* --------------宏参数----------------- p0:             目标值 p1:             预期值 alpha:          显著性水平 power:          检验效能 lbound_rate:    寻值区间下界比例 ubound_rate:    寻值区间上界比例 expand_step:    扩展区间步长 OutDataSet:     输出样本量估算结果的数据集名称 DetailInfo:     输出样本量估算细节的数据集名称 PowerPlot:      是否绘制功效图 ----------------宏变量--------------- ntotal_normal:      正态近似法估算的样本量 ntotal_lbound:      寻值区间下界 ntotal_ubound:      寻值区间上界 IsLocalFindFirst:   是否找到首次满足检验效能的不保守样本量 IsGlobalFind:       是否找到稳定满足检验效能的最保守样本量 LooseMinSampleSize: 首次满足检验效能的不保守样本量 StrictMinSampleSize:稳定满足检验效能的最保守样本量 ActualPower:        最保守样本量下的实际检验效能 */      /*近似正态法求得一个粗略的样本量*/     ods output output = output_normal;     proc power;         onesamplefreq test = z method = normal                       alpha = &alpha                       power = &power                       nullproportion = &p0                       proportion = &p1                       ntotal = .;     run;     proc sql noprint;         select ntotal into: ntotal_normal from output_normal; /*提取正态近似样本量*/     quit;     %let ntotal_lbound = %sysfunc(floor(%sysevalf(&lbound_rate*&ntotal_normal))); /*寻值区间下界*/     %if %sysevalf(&ntotal_lbound < 5) %then %do;         %let ntotal_lbound = 1;         %let lbound_rate = %sysevalf(1/&ntotal_normal);     %end;     %let ntotal_ubound = %sysfunc(ceil(%sysevalf(&ubound_rate*&ntotal_normal))); /*寻值区间上界*/     %if %sysevalf(&ntotal_ubound < 5) %then %do;         %let ntotal_ubound = 20;         %let ubound_rate = %sysevalf(20/&ntotal_normal);     %end;       /*在区间[&ntotal_lbound, &ntotal_ubound]内多次求Power*/     ods output output = output_exact;     proc power;         onesamplefreq test = exact                       alpha = &alpha                       power = .                       nullproportion = &p0                       proportion = &p1                       ntotal = &ntotal_lbound to &ntotal_ubound by 1;         %if &PowerPlot = Y %then %do;             plot x = n min = &ntotal_lbound max = &ntotal_ubound step = 1                  yopts = (ref = &power) xopts = (ref = &ntotal_normal);         %end;     run;      /*左邻点*/     data power_exact_left;         if _n_ = 1 then do;             ntotal = &ntotal_lbound;             power_left = .;             output;         end;         set output_exact(keep = ntotal power                          rename = (power = power_left)                          firstobs = 1 obs = %eval(&ntotal_ubound - &ntotal_lbound));         ntotal = ntotal + 1;         label power_left = "左邻点";         output;     run;     /*目标点*/     data power_exact_mid;         set output_exact(keep = ntotal power rename = (power = power_mid));         label power_mid = "目标点";     run;     /*右邻点*/     data power_exact_right;         set output_exact(keep = ntotal power                          rename = (power = power_right)                          firstobs = 2 obs = %eval(&ntotal_ubound - &ntotal_lbound + 1));         ntotal = ntotal - 1;         label power_right = "右邻点";         output;         if _n_ = %eval(&ntotal_ubound - &ntotal_lbound) then do;             ntotal = &ntotal_ubound;             power_right = .;             output;         end;     run;     /*实际检验效能*/     data alpha_exact;         set output_exact(keep = ntotal alpha);     run;      /*寻找最保守的样本量*/     %let IsLocalFindFirst = 0;     %let IsGlobalFind = 0;     data &DetailInfo;         merge power_exact_left               power_exact_mid               power_exact_right               alpha_exact;         label ntotal              = "当前样本量"               power_left          = "左侧点效能"               power_mid           = "当前点效能"               power_right         = "右侧点效能"               alpha               = "实际Alpha"               min_sample_size     = "已知最低样本量"               is_local_find_first = "首次局部最优解"               is_local_find       = "局部最优解"               is_global_find      = "全局最优解"               peak                = "波峰"               trough              = "波谷";         format power_left  8.6                power_mid   8.6                power_right 8.6;         retain min_sample_size 0                is_local_find 0                is_local_find_first 0                is_global_find 0;         if ntotal > &ntotal_lbound and ntotal < &ntotal_ubound then do;             if power_left < power_mid and power_right < power_mid then peak = "Yes";             if power_left > power_mid and power_right > power_mid then trough = "Yes";              if power_mid > &power and is_local_find = 0 then do; /*局部最优解,标记到达检验效能的样本量*/                 min_sample_size = ntotal;                 is_local_find = 1;                 if is_local_find_first = 0 then do; /*首次达到局部最优解,可视为不保守的样本量估算结果*/                     is_local_find_first = 1;                     call symput("LooseMinSampleSize", min_sample_size);                     call symput("IsLocalFindFirst", is_local_find_first);                 end;             end;             if power_mid < &power and is_local_find = 1 then do; /*局部最优解的破坏,锯齿状的波谷导致此时的检验效能无法稳定在所需大小之上*/                 min_sample_size = .;                 is_local_find = 0;             end;             if (power_mid > &power and trough = "Yes" or power_mid = 1) and is_local_find = 1 and is_global_find = 0  then do; /*全局最优解,此时即便是波谷也能达到所需的检验效能,可视为最保守的样本量估算结果; 当检验效能=1时也可视为达到全局最优解*/                 is_global_find = 1;                 call symput("StrictMinSampleSize", min_sample_size);                 call symput("ActualPower", power_mid);                 call symput("IsGlobalFind", is_global_find);             end;         end;     run;          %if &IsLocalFindFirst = 1 and &IsGlobalFind = 1 %then %do;         /*输出样本量估算结果*/         data &OutDataSet;             label P0 = "目标值"                   P1 = "预期值"                   ALPHA = "显著性水平"                   POWER = "检验效能"                   Normal = "正态近似"                   Exact1 = "精确概率法(不保守)"                   Exact2 = "精确概率法(最保守)";             P0 = &p0;             P1 = &p1;             ALPHA = &alpha;             POWER = &power;             Normal = &ntotal_normal;             Exact1 = &LooseMinSampleSize;             Exact2 = &StrictMinSampleSize;         run;          /*删除数据集*/         proc delete data = output_exact                            output_normal                            power_exact_left                            power_exact_mid                            power_exact_right                            alpha_exact;         run;          /*输出日志*/         %put NOTE: 参数:&=p0, &=p1, &=alpha, &=power;         %put NOTE: 正态近似法求得最低样本量为&ntotal_normal;         %put NOTE: 精确概率法求得首次达到检验效能的最低样本量为 %sysfunc(strip(&LooseMinSampleSize)) (不保守);         %put NOTE: 精确概率法求得最保守的样本量为 %sysfunc(strip(&StrictMinSampleSize)),实际检验效能为 %sysfunc(strip(&ActualPower));     %end;     %else %do;         %SampleSize_ExactBinomial(p0 = &p0, p1 = &p1, alpha = &alpha, power = &power, lbound_rate = &lbound_rate, ubound_rate = %sysevalf(&ubound_rate + &expand_step), expand_step = &expand_step,                                   OutDataSet = &OutDataSet, DetailInfo = &DetailInfo, PowerPlot = &PowerPlot);     %end; %mend;  /*Examples %SampleSize_ExactBinomial(p0 = 0.94, p1 = 0.98); %SampleSize_ExactBinomial(p0 = 0.94, p1 = 0.98, alpha = 0.1); %SampleSize_ExactBinomial(p0 = 0.94, p1 = 0.98, alpha = 0.1, power = 0.9); %SampleSize_ExactBinomial(p0 = 0.94, p1 = 0.98, alpha = 0.1, power = 0.9, lbound_rate = 0.8, ubound_rate = 1.3); %SampleSize_ExactBinomial(p0 = 0.94, p1 = 0.98, OutDataSet = SS); %SampleSize_ExactBinomial(p0 = 0.94, p1 = 0.98, OutDataSet = SS, DetailInfo = Info); %SampleSize_ExactBinomial(p0 = 0.94, p1 = 0.98, OutDataSet = SS, DetailInfo = Info, PowerPlot = N);    data param;     n = 1;     do p1 = 0.940 to 0.980 by 0.002;         call execute('%nrstr(%SampleSize_ExactBinomial(p0 = 0.90, p1 = '||p1||', lbound_rate = 0.6, ubound_rate = 1.2, OutDataSet = SS'||strip(put(n, best.))||', PowerPlot = N))');         n = n + 1;         output;     end; run; data SS;     set SS1-SS21; run; */

参考文献:

  1. Vezzoli S, CROS NT V. Evaluation of Diagnostic Agents: a SAS Macro for Sample Size Estimation Using Exact Methods[C]//SAS Conference Proceedings: Pharmaceutical Users Software Exchange. 2008: 12-15.
  2. Chernick M R, Liu C Y. The saw-toothed behavior of power versus sample size and software solutions: single binomial proportion using exact methods[J]. The American Statistician, 2002, 56(2): 149-155.
  3. AKTAŞ ALTUNAY S. Effect Size For Saw Tooth Power Function in Binomial Trials[J]. 2015.